
* This manuscript is a summary of our paper, DEER: Deep Runahead for Instruction Prefetching on Modern Mobile Workloads, is available at 

https://arxiv.org/abs/2504.20387; this 3-page summary is initially auto-generated by notebooklm.google.com and then reviewed for correctness and consistency by 

the corresponding author. 

DEER: Deep Runahead for Instruction Prefetching * 

Parmida Vahdatniya, Julian Humecki, Henry Kao, Tony Li, Ali Sedaghati, Fang Su*, Ruoyu Zhou*, Alex Bi*,  
Reza Azimi, Maziar Goudarzi 

Huawei Technologies Canada                     Huawei, China∗

 

Abstract—Modern mobile workloads face significant frontend 

stalls primarily due to their increasingly large code footprints and 

long repeat cycles. Existing instruction-prefetching methods often 

struggle with low coverage, poor timeliness, or high costs. We 

propose DEER, a software/hardware co-designed instruction 

prefetcher. It leverages profile analysis to extract metadata, 

enabling the hardware to prefetch the most likely future 

instruction cache-lines much earlier, hundreds of instructions 

ahead. The profile analysis is designed to skip over loops and 

recursions to look deeper into the future instruction stream. On 

the hardware side, a return-address stack helps prefetch on the 

return path from deep call stacks. The generated metadata table 

is stored in DRAM, requiring nearly no on-chip metadata storage 

because DEER’s large lookahead depth allows metadata to be 

preloaded in time. Evaluation using gem5 on real-world modern 

mobile workloads shows up to a 45% reduction in L2 instruction-

miss rate (19.6% on average), leading to speedups of up to 8% 

(4.7% on average). These performance improvements are up to 4 

times larger than those from full-hardware record-and-replay 

prefetchers, while needing two orders of magnitude less on-chip 

storage.  
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I. INTRODUCTION 

Frontend stalls are a critical performance bottleneck because 
code footprint is growing faster than hardware tables can be 
economically scaled [1, 2]. Modern mobile applications are 
complex, using hundreds of libraries with thousands of functions 
and deep cross-library calls, along with JITted code. Unlike 
conventional benchmarks such as SPEC CPU [3] and 
GeekBench, [4] modern mobile workloads exhibit a long tail in 
PC repeat distance, meaning many unique instructions are 
executed between successive occurrences of the same PC. This 
results in frequent capacity misses in CPU frontend structures 
such as the instruction cache, TLB, and branch predictors, often 
leading to backend starvation where IPC is significantly lower 
than the ideal value. This paper specifically focuses on 
addressing I-cache misses, though the concept can extend to 
other structures. 

Software instruction-prefetching, whether compiler-based 
[2, 5, 6] or co-designed [7], attempts to solve this but often incurs 
substantial and wasteful instruction overheads, particularly for 
prefetching on the return path from call stacks. Mobile SoCs 
often use big-little structures, which complicate static tuning of 
software prefetching due to differing cache sizes and sharing 
structures among the cores. Frequent cross-library calls 
occurring every few hundred instructions are another challenge, 
as compilers can only optimize within a single library. Fetch-
directed instruction prefetching techniques [8, 9], relying on 
branch prediction, also perform poorly on these workloads 

because branch prediction accuracy drops significantly due to 
large branch footprints and long repeat distances. Record-and-
replay (RnR) prefetchers [10, 11, 12, 13] achieve partial success 
but require hundreds of kilobytes of on-chip storage and the 
associated energy consumption. 

DEER proposes a profile-guided self-correcting path-
prediction mechanism for prefetching upcoming instruction 
cache lines via hardware-software collaboration. Software 
(compiler or binary analyzer) creates metadata from workload 
profile data, encoding stable execution paths both within and 
across libraries. DEER includes optimizations to make metadata 
concise, accurate, and representative of key execution flow 
aspects like control flow, loops, recursions, calls, and returns. A 
hardware engine uses this metadata and runtime information, 
such as a Return Address Stack (RAS), to look far ahead and do 
a timely prefetch of instruction cache lines. DEER can correct 
itself by reacting to runahead mispredictions and getting 
metadata for the new committed path. Compared to hardware-
only RnR prefetchers, DEER offers higher agility, accuracy, and 
timeliness, while dramatically reducing on-chip storage and 
energy needed for training. The key contributions of DEER 
include a SW/HW co-designed prefetcher delegating training 
and analysis to software profiling (eliminating large hardware 
storage), profile analysis that bypasses loops/recursions for 
deeper future lookahead, a simple SW/HW interface with low 
context-switch overhead (single system register), choice of 
trigger points and metadata granule (Hyper Blocks) balancing 
accuracy and overhead, and evaluation on real-world mobile 
workloads. 

II. DESIGN 

DEER is a software-hardware co-designed prefetcher. The 
software component, a compiler or binary optimizer, analyzes 
the program's control flow and call graph, augmented with 
profile data (execution frequency of basic blocks, branch/call 
target probabilities). From this, Hyperblocks (HBs) are formed 
(Fig. 1). An HB is a stable execution unit within a function, 
composed of basic blocks likely to execute sequentially with a 
probability threshold based on profile data. The HB information 
is then encoded into a Metadata Table stored in the program's 
address space in DRAM. Metadata generation involves a branch 
profiler using CPU PMU (like ARM BRBE) to get branch 
probabilities. A Path Profiler combines this with CFG and call 
graph info to form HBs along highly probable paths. We further 
detect loops/recursions for cycle skipping, and form HB 
metadata by chaining HBs within and across functions. The 
metadata is loaded into a non-cacheable memory area, 

The starting address of this table is loaded into a hardware 
register, `HBT_PTR`. Each HB is characterized in the Metadata 
table with a trigger PC (the starting PC of the HB, in Fig. 1 the 
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trigger PC of HB1 is the first instruction of BB1). And the 
enclosing cacheline addresses of the path of HBs most likely to 
execute after it. 

 

 

Figure. 1. DEER Hyperblock formation flow. 

Figure. 2 shows the hardware component for the Deep 
Runahead Unit within the CPU core. The Deep Runahead Unit 
tracks program execution and uses the metadata table stored in 
memory. At specific trigger points, such as the commit of a 
call/return instruction, the Deep Runahead Unit identifies a set 
of upcoming HBs and passes their enclosing cacheline addresses 
to the Instruction-Fetch Unit or Load/Store Unit for prefetching 
into L1 I-cache or the unified L2 cache. We define trigger PCs 
as the target PCs of calls/returns, which designates an HB and 
initiates an MLS-guided prefetch. 

 

 

Figure. 2. DEER hardware overview 

The system uses a Most Likely Successor (MLS) scheme as 
its building block to predict future execution paths. HBs are 
formed per function, and another MLS layer connects them 
cross-functionally.  

While the HW can dynamically predict the upcoming HBs, 
SSRA (semi-static runahead) is the focus of the paper due to its 
simplicity and storage advantages. In SSRA, the runahead chain 
is computed statically before runtime. The metadata for each HB 
directly contains the entire list of I-cachelines in its MLS chain 
up to a certain point. This list is prefetched upon invoking the 
runahead mechanism. While calculating the runahead statically 
avoids the need for multiple memory lookups to traverse the HB 
chain, SSRA's static RAS limits how far it can trace paths 
involving returns from functions whose callers are not known 
statically.  

The DEER hardware is non-speculative, triggering based on 
committed instructions. A Call/Ret filter identifies these 
instructions. The Trigger PC (target of the call/return) is used to 
generate a memory request for its SSRA metadata line. An 
additional request is issued for the PC at the top of the RAS to 
help recover depth lost in SSRA formation. We also prefetch-
upon-refill, meaning the cachelines are added to the Prefetch 
Buffer when the request is returned from memory.  

Figure. 3 Illustrates how the Metadata encoding is structured 
into 64-bit subentries, each covering three 512-byte regions, 
encoding base addresses and cacheline bitmaps. Deltas are used 
for addresses beyond the first region in each group. Each HB 
metadata entry is 16 Bytes and can encode up to 48 instruction 
cache lines. The offset in the metadata table is derived by 
hashing the HB-start PC, and the base address is loaded into the 
`HBT_PTR` register at program load or context switch. The 
metadata storage overhead in memory is marginal (around 9% 
of exercised code path, 2% of code+data footprint). 

        

 

Figure. 3. HB metadata encoding and access scheme using the 

The choice of call/return instructions as Trigger PCs is based 
on their frequency in mobile workloads (a call every ~50 
instructions). The metadata granule is the target PC of every call 
or return. An optimization removes metadata for HB-chains 
fully contained within another chain. 

III. EXPERIMENAL RESULTS 

Experiments were conducted using gem5 in SE mode with 
an O3 ARM core and a two-level cache hierarchy (256KB L1 
I/D, 2MB unified L2). Evaluation used 15 simpoints captured 
from real mobile apps across various categories (news, games, 
video players, social networks, etc.). The simulated setup 
included a Stride Prefetcher in the L2 cache. DEER was 
compared against four rivals: two Record-and-Replay variants: 
50-HB RnR, 50-Unique-HB RnR/Hierarchical-
Prefetching*(HP*) [16]. And I-Spy* [14] and EFetch* [15], 
adapted to prefetch into L2 and without instruction overhead for 
fairness. DEER used SSRA with a max runahead depth of 50 
HBs and enabled RAS-top prefetch by default. 

Performance Gains: Figure. 4 shows the speedup (IPC) 
gains of 50-HB DEER (gained from an average L2 I-miss-rate 
reduction of 19.9%), 50-HB RnR (average L2 I-miss-rate 
reduction of  5.02%), 50-Unique-HB RnR/HP* (average L2 I-
miss-rate reduction of  5.08%), I-Spy* (average L2 I-miss-rate 
reduction of 4.8%), and EFetch* (average L2 I-miss-rate 
reduction of  0.7%). This translates to average IPC gains of 4.7% 
for DEER, compared to around 1-2% for the rivals. DEER's 
superior gains are attributed to: 

 Deeper runahead and call-stack prefetching. 



 Skipping loops/recursions and prefetching return paths. 

 Using most-likely path prediction based on profiles, 
which is more effective for workloads with less 
immediate repetition, unlike RnR methods that record 
the last observed path. Figure. 5 shows lower prediction 
accuracy for 50-Unique-HB RnR (HP*). 

DEER effectively covers cold, capacity, and conflict misses. 
On smaller applications gains primarily come from covering 
cold misses, which is important given frequent context switches 
in mobile environments. 

 

Figure. 4. DEER speedup compared to rivals. 

 

    

 

Figure. 5. DERR (above) average path prediction accuracy vs 50-Unique-HB 

RnR (HP*). 

Prefetch Usefulness: Figure. 6 breaks down prefetches into 
"hit" (already in cache), "useful" (accessed after filling, covering 
cold or non-cold misses), and "evicted without use". The 
breakdown shows a positive relationship between usefulness 
and performance gains. Both cold and capacity/conflict misses 
contribute significantly to useful prefetches on average.  

     

Figure 6 DEER prefetch usefulness. 

Effective Runahead Depth: We observe and average of 

4963 dynamic instructions and 469 static instructions as the 

effective prefetch runahead depth across these simpoints. The 

cycle-skipping feature allows going significantly deeper beyond 

loops, with a median of 2.2 cycles skipped, but up to 15x more 

in extreme cases. The SSRA chain covers 15.5 HBs on average, 

translating to an effective static runahead depth that helps timely 

prefetching, while 50-HBs-ahead was chosen as the maximum 

depth an SSRA chain aimed to achieve as a balance between 

timeliness and cache pollution. 

 
Overheads: DEER's overheads are minimal: 

 On-chip storage: Only about 304 bytes for the prefetch 
buffer, RAS, and fetched-metadata buffer. This is two 
orders of magnitude smaller than full-hardware RnR 
prefetchers. 

 Metadata size on binary: Marginal compared to 
program binaries. 

 Metadata storage in memory: Marginal (around 2.17% 
of memory-resident code+data footprint), even when 
using hashing (like cuckoo or Murmur3) which might 
double the footprint. 

IV. SUMMARY AND CONCLUSION 

DEER demonstrates that a simple co-designed profile-based 
path predictor can effectively forecast upcoming cache lines, 
enabling our co-designed prefetcher to timely prefetch them. By 
continuously and timely refilling the cache, DEER allows a 
smaller cache to achieve performance comparable to a much 
larger one lacking this feature. This is particularly valuable for 
mobile workloads due to frequent preemptions, complex big-
little cache hierarchies, and deep cross-library calls. 

DEER provides a low-cost, Kilo-instructions-deep 
instruction prefetch mechanism that effectively reduces frontend 
stalls in mobile workloads by covering cold, capacity, and 
conflict misses. It employs a static most-likely-path predictor 
that dynamically corrects itself based on retired control flow. 
The SW/HW interface is lightweight, requiring only setting a 
single system register pointing to the metadata table in memory, 
which is saved/restored on context switch. DEER works on 
binaries, and consequently can be applied even if the source 
codes of the libraries are not available. By offloading path 
prediction to software, DEER eliminates the need for expensive 
on-chip metadata storage, achieving over 4x higher gains than 
full-hardware rivals at two orders of magnitude lower cost. 
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