
* This manuscript is a summary of our paper, DEER: Deep Runahead for Instruction Prefetching on Modern Mobile Workloads, is available at

https://arxiv.org/abs/2504.20387; this 3-page summary is initially auto-generated by notebooklm.google.com and then reviewed for correctness and consistency by

the corresponding author.

DEER: Deep Runahead for Instruction Prefetching *

Parmida Vahdatniya, Julian Humecki, Henry Kao, Tony Li, Ali Sedaghati, Fang Su*, Ruoyu Zhou*, Alex Bi*,
Reza Azimi, Maziar Goudarzi

Huawei Technologies Canada Huawei, China∗

Abstract—Modern mobile workloads face significant frontend

stalls primarily due to their increasingly large code footprints and

long repeat cycles. Existing instruction-prefetching methods often

struggle with low coverage, poor timeliness, or high costs. We

propose DEER, a software/hardware co-designed instruction

prefetcher. It leverages profile analysis to extract metadata,

enabling the hardware to prefetch the most likely future

instruction cache-lines much earlier, hundreds of instructions

ahead. The profile analysis is designed to skip over loops and

recursions to look deeper into the future instruction stream. On

the hardware side, a return-address stack helps prefetch on the

return path from deep call stacks. The generated metadata table

is stored in DRAM, requiring nearly no on-chip metadata storage

because DEER’s large lookahead depth allows metadata to be

preloaded in time. Evaluation using gem5 on real-world modern

mobile workloads shows up to a 45% reduction in L2 instruction-

miss rate (19.6% on average), leading to speedups of up to 8%

(4.7% on average). These performance improvements are up to 4

times larger than those from full-hardware record-and-replay

prefetchers, while needing two orders of magnitude less on-chip

storage.

Keywords—Instruction prefetching, SW/HW co-design, path

prediction, profile-guided optimization.

I. INTRODUCTION

Frontend stalls are a critical performance bottleneck because
code footprint is growing faster than hardware tables can be
economically scaled [1, 2]. Modern mobile applications are
complex, using hundreds of libraries with thousands of functions
and deep cross-library calls, along with JITted code. Unlike
conventional benchmarks such as SPEC CPU [3] and
GeekBench, [4] modern mobile workloads exhibit a long tail in
PC repeat distance, meaning many unique instructions are
executed between successive occurrences of the same PC. This
results in frequent capacity misses in CPU frontend structures
such as the instruction cache, TLB, and branch predictors, often
leading to backend starvation where IPC is significantly lower
than the ideal value. This paper specifically focuses on
addressing I-cache misses, though the concept can extend to
other structures.

Software instruction-prefetching, whether compiler-based
[2, 5, 6] or co-designed [7], attempts to solve this but often incurs
substantial and wasteful instruction overheads, particularly for
prefetching on the return path from call stacks. Mobile SoCs
often use big-little structures, which complicate static tuning of
software prefetching due to differing cache sizes and sharing
structures among the cores. Frequent cross-library calls
occurring every few hundred instructions are another challenge,
as compilers can only optimize within a single library. Fetch-
directed instruction prefetching techniques [8, 9], relying on
branch prediction, also perform poorly on these workloads

because branch prediction accuracy drops significantly due to
large branch footprints and long repeat distances. Record-and-
replay (RnR) prefetchers [10, 11, 12, 13] achieve partial success
but require hundreds of kilobytes of on-chip storage and the
associated energy consumption.

DEER proposes a profile-guided self-correcting path-
prediction mechanism for prefetching upcoming instruction
cache lines via hardware-software collaboration. Software
(compiler or binary analyzer) creates metadata from workload
profile data, encoding stable execution paths both within and
across libraries. DEER includes optimizations to make metadata
concise, accurate, and representative of key execution flow
aspects like control flow, loops, recursions, calls, and returns. A
hardware engine uses this metadata and runtime information,
such as a Return Address Stack (RAS), to look far ahead and do
a timely prefetch of instruction cache lines. DEER can correct
itself by reacting to runahead mispredictions and getting
metadata for the new committed path. Compared to hardware-
only RnR prefetchers, DEER offers higher agility, accuracy, and
timeliness, while dramatically reducing on-chip storage and
energy needed for training. The key contributions of DEER
include a SW/HW co-designed prefetcher delegating training
and analysis to software profiling (eliminating large hardware
storage), profile analysis that bypasses loops/recursions for
deeper future lookahead, a simple SW/HW interface with low
context-switch overhead (single system register), choice of
trigger points and metadata granule (Hyper Blocks) balancing
accuracy and overhead, and evaluation on real-world mobile
workloads.

II. DESIGN

DEER is a software-hardware co-designed prefetcher. The
software component, a compiler or binary optimizer, analyzes
the program's control flow and call graph, augmented with
profile data (execution frequency of basic blocks, branch/call
target probabilities). From this, Hyperblocks (HBs) are formed
(Fig. 1). An HB is a stable execution unit within a function,
composed of basic blocks likely to execute sequentially with a
probability threshold based on profile data. The HB information
is then encoded into a Metadata Table stored in the program's
address space in DRAM. Metadata generation involves a branch
profiler using CPU PMU (like ARM BRBE) to get branch
probabilities. A Path Profiler combines this with CFG and call
graph info to form HBs along highly probable paths. We further
detect loops/recursions for cycle skipping, and form HB
metadata by chaining HBs within and across functions. The
metadata is loaded into a non-cacheable memory area,

The starting address of this table is loaded into a hardware
register, `HBT_PTR`. Each HB is characterized in the Metadata
table with a trigger PC (the starting PC of the HB, in Fig. 1 the

https://arxiv.org/abs/2504.20387

trigger PC of HB1 is the first instruction of BB1). And the
enclosing cacheline addresses of the path of HBs most likely to
execute after it.

Figure. 1. DEER Hyperblock formation flow.

Figure. 2 shows the hardware component for the Deep
Runahead Unit within the CPU core. The Deep Runahead Unit
tracks program execution and uses the metadata table stored in
memory. At specific trigger points, such as the commit of a
call/return instruction, the Deep Runahead Unit identifies a set
of upcoming HBs and passes their enclosing cacheline addresses
to the Instruction-Fetch Unit or Load/Store Unit for prefetching
into L1 I-cache or the unified L2 cache. We define trigger PCs
as the target PCs of calls/returns, which designates an HB and
initiates an MLS-guided prefetch.

Figure. 2. DEER hardware overview

The system uses a Most Likely Successor (MLS) scheme as
its building block to predict future execution paths. HBs are
formed per function, and another MLS layer connects them
cross-functionally.

While the HW can dynamically predict the upcoming HBs,
SSRA (semi-static runahead) is the focus of the paper due to its
simplicity and storage advantages. In SSRA, the runahead chain
is computed statically before runtime. The metadata for each HB
directly contains the entire list of I-cachelines in its MLS chain
up to a certain point. This list is prefetched upon invoking the
runahead mechanism. While calculating the runahead statically
avoids the need for multiple memory lookups to traverse the HB
chain, SSRA's static RAS limits how far it can trace paths
involving returns from functions whose callers are not known
statically.

The DEER hardware is non-speculative, triggering based on
committed instructions. A Call/Ret filter identifies these
instructions. The Trigger PC (target of the call/return) is used to
generate a memory request for its SSRA metadata line. An
additional request is issued for the PC at the top of the RAS to
help recover depth lost in SSRA formation. We also prefetch-
upon-refill, meaning the cachelines are added to the Prefetch
Buffer when the request is returned from memory.

Figure. 3 Illustrates how the Metadata encoding is structured
into 64-bit subentries, each covering three 512-byte regions,
encoding base addresses and cacheline bitmaps. Deltas are used
for addresses beyond the first region in each group. Each HB
metadata entry is 16 Bytes and can encode up to 48 instruction
cache lines. The offset in the metadata table is derived by
hashing the HB-start PC, and the base address is loaded into the
`HBT_PTR` register at program load or context switch. The
metadata storage overhead in memory is marginal (around 9%
of exercised code path, 2% of code+data footprint).

Figure. 3. HB metadata encoding and access scheme using the

The choice of call/return instructions as Trigger PCs is based
on their frequency in mobile workloads (a call every ~50
instructions). The metadata granule is the target PC of every call
or return. An optimization removes metadata for HB-chains
fully contained within another chain.

III. EXPERIMENAL RESULTS

Experiments were conducted using gem5 in SE mode with
an O3 ARM core and a two-level cache hierarchy (256KB L1
I/D, 2MB unified L2). Evaluation used 15 simpoints captured
from real mobile apps across various categories (news, games,
video players, social networks, etc.). The simulated setup
included a Stride Prefetcher in the L2 cache. DEER was
compared against four rivals: two Record-and-Replay variants:
50-HB RnR, 50-Unique-HB RnR/Hierarchical-
Prefetching*(HP*) [16]. And I-Spy* [14] and EFetch* [15],
adapted to prefetch into L2 and without instruction overhead for
fairness. DEER used SSRA with a max runahead depth of 50
HBs and enabled RAS-top prefetch by default.

Performance Gains: Figure. 4 shows the speedup (IPC)
gains of 50-HB DEER (gained from an average L2 I-miss-rate
reduction of 19.9%), 50-HB RnR (average L2 I-miss-rate
reduction of 5.02%), 50-Unique-HB RnR/HP* (average L2 I-
miss-rate reduction of 5.08%), I-Spy* (average L2 I-miss-rate
reduction of 4.8%), and EFetch* (average L2 I-miss-rate
reduction of 0.7%). This translates to average IPC gains of 4.7%
for DEER, compared to around 1-2% for the rivals. DEER's
superior gains are attributed to:

 Deeper runahead and call-stack prefetching.

 Skipping loops/recursions and prefetching return paths.

 Using most-likely path prediction based on profiles,
which is more effective for workloads with less
immediate repetition, unlike RnR methods that record
the last observed path. Figure. 5 shows lower prediction
accuracy for 50-Unique-HB RnR (HP*).

DEER effectively covers cold, capacity, and conflict misses.
On smaller applications gains primarily come from covering
cold misses, which is important given frequent context switches
in mobile environments.

Figure. 4. DEER speedup compared to rivals.

Figure. 5. DERR (above) average path prediction accuracy vs 50-Unique-HB

RnR (HP*).

Prefetch Usefulness: Figure. 6 breaks down prefetches into
"hit" (already in cache), "useful" (accessed after filling, covering
cold or non-cold misses), and "evicted without use". The
breakdown shows a positive relationship between usefulness
and performance gains. Both cold and capacity/conflict misses
contribute significantly to useful prefetches on average.

Figure 6 DEER prefetch usefulness.

Effective Runahead Depth: We observe and average of

4963 dynamic instructions and 469 static instructions as the

effective prefetch runahead depth across these simpoints. The

cycle-skipping feature allows going significantly deeper beyond

loops, with a median of 2.2 cycles skipped, but up to 15x more

in extreme cases. The SSRA chain covers 15.5 HBs on average,

translating to an effective static runahead depth that helps timely

prefetching, while 50-HBs-ahead was chosen as the maximum

depth an SSRA chain aimed to achieve as a balance between

timeliness and cache pollution.

Overheads: DEER's overheads are minimal:

 On-chip storage: Only about 304 bytes for the prefetch
buffer, RAS, and fetched-metadata buffer. This is two
orders of magnitude smaller than full-hardware RnR
prefetchers.

 Metadata size on binary: Marginal compared to
program binaries.

 Metadata storage in memory: Marginal (around 2.17%
of memory-resident code+data footprint), even when
using hashing (like cuckoo or Murmur3) which might
double the footprint.

IV. SUMMARY AND CONCLUSION

DEER demonstrates that a simple co-designed profile-based
path predictor can effectively forecast upcoming cache lines,
enabling our co-designed prefetcher to timely prefetch them. By
continuously and timely refilling the cache, DEER allows a
smaller cache to achieve performance comparable to a much
larger one lacking this feature. This is particularly valuable for
mobile workloads due to frequent preemptions, complex big-
little cache hierarchies, and deep cross-library calls.

DEER provides a low-cost, Kilo-instructions-deep
instruction prefetch mechanism that effectively reduces frontend
stalls in mobile workloads by covering cold, capacity, and
conflict misses. It employs a static most-likely-path predictor
that dynamically corrects itself based on retired control flow.
The SW/HW interface is lightweight, requiring only setting a
single system register pointing to the metadata table in memory,
which is saved/restored on context switch. DEER works on
binaries, and consequently can be applied even if the source
codes of the libraries are not available. By offloading path
prediction to software, DEER eliminates the need for expensive
on-chip metadata storage, achieving over 4x higher gains than
full-hardware rivals at two orders of magnitude lower cost.

REFERENCES

[1] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and Parthasarathy
Ranganathan. Memory hierarchy for web search. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 643–656. IEEE, 2018

[2] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho,
Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner
Litz, Tipp Moseley, and Parthasarathy Ranganathan. Asmdb:
understanding and mitigating front- International Symposium on
Computer Architecture, ISCA ’19, page 462–473, New York, NY, USA,
2019. Association for Computing Machinery.

[3] Spec home page. In https:https://www.spec.org/.

[4] Geekbenc home page. In https://www.primatelabs.com/.

[5] Cansu Kaynak, Boris Grot, and Babak Falsafi. Confluence: unified
instruction supply for scale-out servers. In Proceedings of the 48th
International Symposium on Microarchitecture, pages 166–177, 2015.

[6] Chi-Keung Luk and T.C. Mowry. Cooperative prefetching: compiler and
hardware support for effective instruction prefetching in modern
processors. In Proceedings. 31st Annual ACM/IEEE International
Symposium on Microarchitecture, pages 182–193, 1998

[7] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam,
Heiner Litz, and Baris Kasikci. I-spy: Context-driven conditional
instruction prefetching with coalescing. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 146–
159, 2020.

[8] Yasuo Ishii, Jaekyu Lee, Krishnendra Nathella, and Dam Sunwoo. Re-
establishing fetch-directed instruction prefetching: An industry
perspective. In 2021 IEEE In-ternational Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 172–182. IEEE,
2021

[9] Glenn Reinman, Brad Calder, and Todd Austin. Fetch directed instruction
prefetching. In MICRO-32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture, pages 16–27. IEEE,
1999.

[10] Arm ltd. arm cortex-a78ae core technical reference manual revision r0p1,
cpuectlr el1, cpu extended control register, el1.

[11] Arm ltd. arm cortex-x2 core technical reference manual r2p0, imp
cpuectlr el1, cpu extended control register.

[12] Sam Ainsworth and Lev Mukhanov. Triangel: A high-performance,
accurate, timely on-chip temporal prefetcher. arXiv preprint
arXiv:2406.10627, 2024

[13] Hao Wu, Krishnendra Nathella, Joseph Pusdesris, Dam Sunwoo,
Akanksha Jain, and Calvin Lin. Temporal prefetching without the off-
chip metadata. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 996–1008, 2019.

[14] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam,
Heiner Litz, and Baris Kasikci. 2020. I-SPY: Context-Driven Conditional
Instruction Prefetching with Coalescing. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
146–159. https://doi.org/10.1109/MICRO50266.2020.00024

[15] Gaurav Chadha, Scott Mahlke, and Satish Narayanasamy. 2014. EFetch:
optimizing instruction fetch for event-driven webapplications. In
Proceedings of the 23rd International Conference on Parallel Architectures
and Compilation (Edmonton, AB, Canada) (PACT ’14). Association for
Computing Machinery, New York, NY, USA, 75–86.
https://doi.org/10.1145/2628071.2628103

[16] Tingji Zhang, Boris Grot, Wenjian He, Yashuai Lv, Peng Qu, Fang Su,
Wenxin Wang, Guowei Zhang, Xuefeng Zhang, and Youhui Zhang.
2025. Hierarchical Prefetching: A Software-Hardware Instruction
Prefetcher for Server Applications. In Proceedings of the 30th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2. 529–544.

https://doi.org/10.1109/MICRO50266.2020.00024
https://doi.org/10.1145/2628071.2628103

