
DEER: Deep Runahead for Instruction Prefetching 

ARM-based General-Purpose Computing @ International Symposium on Computer Architecture (ISCA), June 21st 2025, Tokyo, Japan

Parmida Vahdatniya (Huawei Technologies Canada)

Julian Humecki (Huawei Technologies Canada)
Henry Kao (Huawei Technologies Canada)
Tony Li (Huawei Technologies Canada)

Ali Sedaghati (Huawei Technologies Canada)
Fang Su (Huawei China)

Ruoyu Zhou (Huawei China)
Alex Bi (Huawei China)
Maziar Goudarzi (Huawei Technologies Canada)

Reza Azimi (Huawei Technologies Canada)



• Mobile workloads face heavy frontend 

stalls due to large code footprints and long 

repeat cycles.

> Complex

> Using hundreds of libraries with thousands of 

functions 

> Deep cross-library calls

> Exhibiting a long tail in PC repeat distance

> Not representable by SPEC CPU, 

GeekBench, etc…

• Existing prefetchers (hardware and 
software) struggle with:

> Insufficient coverage 

> High storage and energy costs

Introduction and Motivation

arXiv paper: https://arxiv.org/abs/2504.20387



• Software-Only Prefetchers:

> High runtime overhead 

> Hard to place in the right locations

> Limited effectiveness with cross library prefetching

• Hardware-Only Prefetchers:

> Need large, expensive storage to track instruction streams

> Power & area costs

> Limited by the accuracy of branch predictors

• Record-and-Replay Approaches:

> Offer some improvement

> Significant area and power overhead

> Not good for resource-constrained mobile environments

Challenges of Existing Prefetching Techinques



DEER (Deep Runahead Prefetcher) Overview

• Software-Hardware co-designed technique

• Offline Record: profiling & offline analysis to predict future instruction streams, even across 

complex control flows

• Compact metadata describes likely future instruction cache lines

• Online Replay: Hardware components uses this metadata to prefetch instructions



• Coarse-grained control flow 

stability exists in programs

• Form HBs to represent a stable 

unit of execution within a 

function

• Branch Profiling using ARM 

BRBE

• Offline tools to build stable paths 

from BRBE profiles and 

compiler analysis

• Chain HB together to form 

interprocedural stable paths

Offline Profiling + Analysis
& HyperBlocks

a

b c

d

e

f

g

0.90.1

0.9
0.1

a

b c

d

e

f

g

0.90.1

0.9
0.1

a

b c

d

e

f

g

0.90.1

0.9
0.1

HB 1 HB 3

foo(…)

HB 2
bar(…)



• Embed stable HB chains as 

metadata into memory

• Prefetch the lines when PC 

reached the start of an HB

• Prefetch redundancy might 

exist

• However, necessary in the 
case where code takes an 

alternate path

• No context-sensitivity

Encoding Prefetch Chains HyperBlock Prefetch Lines

HB1 A, B, C, D, E, F

HB2 C

HB3 D, E, F

HB 4 HB 5

HB 1

HB 2

HB 3

foo(…)

bar(…)

Lines: A, B

Lines: C

Lines: D, E, F

HB 6

Lines: X, Y



• Metadata embedded into the binary from the 

dynamic loader

• Start address of the metadata in memory stored 

in a system register (saved and restored in 
context-switch)

• Each HB metadata uses 16B and encodes up to 

48 instruction cache lines.

• Hash of PC and Start address of metadata table 

is used to fetch prefetch metadata from memory

Embedding the Prefetch
Metadata



• Use retired/commited PC to generate a 

metadata fetch address from memory

• Prefetch line addresses get extracted 

from the metadata once returned from 
memory

• Prefetch address get pushed onto the 

prefetch buffer

Hardware Modifications



• gem5 in SE mode 

• O3 ARM core 

• 256KB L1 I/D, 2MB unified L2

• Stride prefetchers

• 15 simpoints captured from real mobile apps across various categories (news, games, video players, 

social networks, etc…)

Evaluated Prior Art:

• Record and Replay: Record and Replay the last 50 HBs

• Hierarchical-Prefetching* (ASPLOS’25): Record and Replay last 50 HBs based on trigger PCs

• I-Spy* (MICRO’20): Software prefetching without the dynamic instruction overheads

• EFetch* (PACT’14): Prefetch down call chains based on software hints

All adapted to prefetch into L2 and without instruction overhead for fairness

Evaluation Setup



Evaluation
P

re
fe

tc
h
 C

o
v
e

ra
g
e

S
p
e
e

d
u
p



• DEER is a software-hardware co-design prefetcher that predicts likely instruction paths far into the 

future

• Offline Record: Push the burden of recording/predicting deep instruction paths to offline software 

analysis by leveraging ARM’s BRBE profiling extension

• Online Replay: Replay the instruction cache lines in the deep instruction paths provided from offline 
recording

• Outperforms hardware-centric techniques by covering cold misses

• Outperforms software-centric techniques by reducing dynamic instruction overheads

• Particularly useful for mobile systems which may contains an abundance of cold misses (TODO: need to 

measure this)

> Application startups

> Context Switching

> Thread Migrations

Conclusion & Future Work



Copyright©2018 Huawei Technologies Co., Ltd.

All Rights Reserved.

The information in this document may contain predictive 

statements including, without limitation, statements regarding 

the future f inancial and operating results, future product 

portfolio, new technology, etc. There are a number of factors that 

could cause actual results and developments to differ materially 

from those expressed or implied in the predictive statements. 

Therefore, such information is provided for reference purpose 

only and constitutes neither an offer nor an acceptance. Huawei 

may change the information at any time without notice. 

Bring digital to every person, home and 
organization for a fully connected, 
intelligent world.

Thank you.

arXiv paper: https://arxiv.org/abs/2504.20387



Evaluation

DEER accuracy of predicted upcoming cachelines vs Hierarchical-Prefetching* accuracy 



DEER (Deep Runahead Prefetcher): Upper Bound Gains

Upper bound ipc speedup by an oracle DEER prefetcher


	Cover page_Image version
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15


