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• Mobile workloads face heavy frontend 

stalls due to large code footprints and long 

repeat cycles.

> Complex

> Using hundreds of libraries with thousands of 

functions 

> Deep cross-library calls

> Exhibiting a long tail in PC repeat distance

> Not representable by SPEC CPU, 

GeekBench, etc…

• Existing prefetchers (hardware and 
software) struggle with:

> Insufficient coverage 

> High storage and energy costs

Introduction and Motivation
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• Software-Only Prefetchers:

> High runtime overhead 

> Hard to place in the right locations

> Limited effectiveness with cross library prefetching

• Hardware-Only Prefetchers:

> Need large, expensive storage to track instruction streams

> Power & area costs

> Limited by the accuracy of branch predictors

• Record-and-Replay Approaches:

> Offer some improvement

> Significant area and power overhead

> Not good for resource-constrained mobile environments

Challenges of Existing Prefetching Techinques



DEER (Deep Runahead Prefetcher) Overview

• Software-Hardware co-designed technique

• Offline Record: profiling & offline analysis to predict future instruction streams, even across 

complex control flows

• Compact metadata describes likely future instruction cache lines

• Online Replay: Hardware components uses this metadata to prefetch instructions



• Coarse-grained control flow 

stability exists in programs

• Form HBs to represent a stable 

unit of execution within a 

function

• Branch Profiling using ARM 

BRBE

• Offline tools to build stable paths 

from BRBE profiles and 

compiler analysis

• Chain HB together to form 

interprocedural stable paths

Offline Profiling + Analysis
& HyperBlocks
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• Embed stable HB chains as 

metadata into memory

• Prefetch the lines when PC 

reached the start of an HB

• Prefetch redundancy might 

exist

• However, necessary in the 
case where code takes an 

alternate path

• No context-sensitivity

Encoding Prefetch Chains HyperBlock Prefetch Lines
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• Metadata embedded into the binary from the 

dynamic loader

• Start address of the metadata in memory stored 

in a system register (saved and restored in 
context-switch)

• Each HB metadata uses 16B and encodes up to 

48 instruction cache lines.

• Hash of PC and Start address of metadata table 

is used to fetch prefetch metadata from memory

Embedding the Prefetch
Metadata



• Use retired/commited PC to generate a 

metadata fetch address from memory

• Prefetch line addresses get extracted 

from the metadata once returned from 
memory

• Prefetch address get pushed onto the 

prefetch buffer

Hardware Modifications



• gem5 in SE mode 

• O3 ARM core 

• 256KB L1 I/D, 2MB unified L2

• Stride prefetchers

• 15 simpoints captured from real mobile apps across various categories (news, games, video players, 

social networks, etc…)

Evaluated Prior Art:

• Record and Replay: Record and Replay the last 50 HBs

• Hierarchical-Prefetching* (ASPLOS’25): Record and Replay last 50 HBs based on trigger PCs

• I-Spy* (MICRO’20): Software prefetching without the dynamic instruction overheads

• EFetch* (PACT’14): Prefetch down call chains based on software hints

All adapted to prefetch into L2 and without instruction overhead for fairness

Evaluation Setup
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• DEER is a software-hardware co-design prefetcher that predicts likely instruction paths far into the 

future

• Offline Record: Push the burden of recording/predicting deep instruction paths to offline software 

analysis by leveraging ARM’s BRBE profiling extension

• Online Replay: Replay the instruction cache lines in the deep instruction paths provided from offline 
recording

• Outperforms hardware-centric techniques by covering cold misses

• Outperforms software-centric techniques by reducing dynamic instruction overheads

• Particularly useful for mobile systems which may contains an abundance of cold misses (TODO: need to 

measure this)

> Application startups

> Context Switching

> Thread Migrations

Conclusion & Future Work
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Evaluation

DEER accuracy of predicted upcoming cachelines vs Hierarchical-Prefetching* accuracy 



DEER (Deep Runahead Prefetcher): Upper Bound Gains

Upper bound ipc speedup by an oracle DEER prefetcher
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