
Henry Kao (Huawei Technologies Canada)

Nikhil Sreekumar (Huawei Technologies Canada)
Prabhdeep Singh Soni (Huawei Technologies Canada)
Ali Sedaghati (Huawei Technologies Canada)

Fang Su (Huawei China)
Bryan Chan (Huawei Technologies Canada)

Maziar Goudarzi (Huawei Technologies Canada)
Reza Azimi (Huawei Technologies Canada)

ARM-based General-Purpose Computing @ International Symposium on Computer Architecture (ISCA), June 21st 2025, Tokyo, Japan

Temperature-Guided Instruction
Caching Using Page-Based
Hardware Attributes

Optimizing Mobile System Libraries

O
p

tim
iz

e
 P

e
rfo

rm
a

n
c
e

• System performance impacts

everything running on the mobile

device, not just a single

application/workload

• Design compiler optimizations or
software-hardware co-design

techniques to optimize

performance

• Many system libraries show

front-end boundedness

• Compiler PGO with code-layout

optimizations already show

considerable performance

improvements

• Key Insight

> PGO improves spatial locality

> PGO cannot improve temporal locality

> Cache replacement tries to predict temporal

locality, can we influence that?

• Idea

> Pass temperature information to the caches

Reasons for Frontend Bottlenecks

1

2 3

4

100 0

0100

CFG

1

2

3

4

Non-PGO

Layout

1

2

3

4

PGO

Layout

Spatial Locality

Temporal Locality

• Develop compiler optimizations to

improve performance

• Great, because no hardware

changes are needed, performance

from pure code optimizations

> Function Inlining

> Function Placement

> Block Placement

Trade-offs to consider:

• Code Size

• Compile Time

Challenges as a Compiler Developer

#include <stdio.h>

#include <stdlib.h>

extern void dummy(int x);

int compute(int x) {
 int temp1 = x * x;
 int temp2 = temp1 + x;

 int temp3 = temp1 / temp2 - 25;
 int temp4 = temp3 ^ 0xffff & 0xadbd;
 int temp5 = (temp4 * x) + x;
 return temp5;

}

int main(int argc, char *argv[]) {
 int num1 = atoi(argv[0]);
 int num2 = atoi(argv[1]);
 int result1 = compute(num1);

 int result2 = compute(num2);
 dummy(result1);
 dummy(result2);
 return 0;

}

compute:
mul w9, w0, w0
mov w8, #44477
add w10, w9, w0

sdiv w9, w9, w10
sub w9, w9, #25
eor w8, w9, w8
madd w0, w0, w8, w0
ret

main:
stp x29, x30, [sp, #-32]!
str x19, [sp, #16]
mov x29, sp

ldr x0, [x1]
mov x19, x1
mov x1, xzr
mov w2, #10
bl strtol

ldr x8, [x19, #8]
mov x19, x0
mov x1, xzr
mov w2, #10
mov x0, x8

bl strtol
mul w8, w19, w19
add w9, w8, w19
sdiv w8, w8, w9
mul w9, w0, w0

add w10, w9, w0
sdiv w9, w9, w10
sub w8, w8, #25
mov w10, #44477
eor w8, w8, w10

madd w8, w19, w8, w19
sub w9, w9, #25
eor w9, w9, w10
madd w19, w0, w9, w0
mov w0, w8

bl dummy
mov w0, w19
bl dummy
mov w0, wzr
ldr x19, [sp, #16]

ldp x29, x30, [sp], #32
ret

Inlined

compute:
 mul w9, w0, w0
 mov w8, #44477
 add w10, w9, w0

 sdiv w9, w9, w10
 sub w9, w9, #25
 eor w8, w9, w8
 madd w0, w0, w8, w0
 ret

main:
 stp x29, x30, [sp, #-32]!
 stp x20, x19, [sp, #16]
 mov x29, sp

 ldr x0, [x1]
 mov x19, x1
 mov x1, xzr
 mov w2, #10
 bl strtol

 ldr x8, [x19, #8]
 mov x19, x0
 mov x1, xzr
 mov w2, #10
 mov x0, x8

 bl strtol
 mov x20, x0
 mov w0, w19
 bl compute
 mov w19, w0

 mov w0, w20
 bl compute
 mov w20, w0
 mov w0, w19
 bl dummy

 mov w0, w20
 bl dummy
 mov w0, wzr
 ldp x20, x19, [sp, #16]
 ldp x29, x30, [sp], #32

 ret

Not Inlined

• Software/Compiler offline analysis can provide a lot of

performance optimization hints to the hardware

> Software prefetching

> Execution frequency of instructions/data

> Branch taken/not-taken information (ARM BRBE)

• How to pass information from offline analysis to

hardware?

Challenges Designing Co-Designed Solutions

Song et al., “Thermometer: Profile-Guided BTB Replacement for Data Center Applications”, ISCA’22

New Instructions?

> ISA license (e.g., ARM) restrictions

> Dynamic instruction overhead

> New HW to process instructions

Metadata?

> Code size increase

> Dynamic code footprint

increase

Software

• Keep code size increase minimal

• Keep compile time increase minimal

Summary of Challenges

Hardware

• No changes to ISA

• Power and area cost minimal

(especially on mobile devices)

Mise En Place
Mobile Libraries

Front-end Bottlenecks

Compiler (BiSheng/LLVM) PGO

Temporal Locality of Hot Code is an Issue

Convenient Software-Hardware Interface

Temperature Guided Instruction Cache Replacement

• fasdfasdf

Code Generation and Optimization
> readelf –S <binary>

Section Headers:

 [Nr] Name Type Address Offset
 Size EntSize Flags Link Info Align

 [0] NULL 0000000000000000 00000000
 0000000000000000 0000000000000000 0 0 0
…

 [13] .text PROGBITS 0000000000038ae0 00037ae0
 0000000000030bc9 0000000000000000 AX 0 0 16

 [14] .init PROGBITS 00000000000696ac 000686ac
 000000000000001b 0000000000000000 AX 0 0 4
 [15] .fini PROGBITS 00000000000696c8 000686c8

 000000000000000d 0000000000000000 AX 0 0 4
 [16] .text.unlikely PROGBITS 00000000000696e0 000686e0

 00000000000624d6 0000000000000000 AX 0 0 16
 [17] .text.hot PROGBITS 00000000000cbbc0 000cabc0
 0000000000088f59 0000000000000000 AX 0 0 16

 [18] .plt PROGBITS 0000000000154b20 00153b20
 00000000000003b0 0000000000000000 AX 0 0 16

…

• Loader is executed prior to running the

application

• Loader reads information in program

headers (incl. temperature information)

• Loader creates the Page Tables and
corresponding PTEs

• Populate PBHA bits with temperature

information

• PBHA support ongoing in Linux Kernel

Operating System

Cache Replacement

Core

MMU

TLB

Walker

Caches
L1 I/D

L2
L3

SLC

Memory

Translation
Tables

PBHA PBHA
Kernel

• Pass temperature information from PTE

with memory request to caches

• Cache replacement reads temperature

information to improve temporal locality

of HOT code

• Use RRIP replacement policy

• Applied to L2 cache

Evaluation Methodology
LittleMiddleBig LittleLittleLittleMiddleMiddle

L2

L3 L4

L5

Heterogeneous Cores

• Normalized to RRIP

• RRIP on average performs better than

LRU

• Compare with CLIP (Code Line

Preservation HPCA’15)

> Prioritize all instruction cache lines

• TRRIP performs better than CLIP due to

being more selective about which

instruction lines to keep in the cache

• Instruction “hotness” is tunable in the

compiler, can select best performing

value

Evaluation
Ours

• Mobile system libraries show frontend bottlenecks

• PGO shows considerable speedup, but frontend bottleneck still present

> Improvement comes from improving instruction spatial locality

> More can be done with temporal locality, since HOT code shows high reuse distances

• Propose a lightweight technique that reuses many existing and established mechanisms

• Pass code temperature information from compiler PGO to hardware cache using ARM’s PBHA

• Improve temporal locality by keeping HOT code in the cache for longer

• Full paper currently in review…

Conclusion

Copyright©2018 Huawei Technologies Co., Ltd.

All Rights Reserved.

The information in this document may contain predictive

statements including, without limitation, statements regarding

the future f inancial and operating results, future product

portfolio, new technology, etc. There are a number of factors that

could cause actual results and developments to differ materially

from those expressed or implied in the predictive statements.

Therefore, such information is provided for reference purpose

only and constitutes neither an offer nor an acceptance. Huawei

may change the information at any time without notice.

Bring digital to every person, home and
organization for a fully connected,
intelligent world.

Thank you.

	Cover page_Image version
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

