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Abstract—Genome sequence analysis is fundamental to medical
breakthroughs such as developing vaccines, enabling genome
editing, and facilitating personalized medicine. The exponentially
expanding sequencing datasets and complexity of sequencing
algorithms necessitate performance enhancements. While the per-
formance of software solutions is constrained by their underlying
hardware platforms, the utility of fixed-function accelerators
is restricted to only certain sequencing algorithms. This paper
introduces Quetzal, a novel vector acceleration framework for
genomics algorithms. It addresses limitations in conventional
CPU vector datapaths, offering hardware-software co-design with
novel vector instructions. Quetzal supports both short and long
reads, minimizes memory latency, and achieves a 5.67× speedup
over vectorized CPU baselines in sequencing algorithms.

I. MOTIVATION

A. Challenges in accelerating modern genome sequencing
algorithms on vector architectures

Commodity high-performance ARM CPUs include support
for vector hardware composed of a Vector Register File (VRF),
where each vector register is an array of elements, and a Vector
Processing Unit (VPU), which consists of multiple parallel
execution units referred to as lanes [1].

Modern genome sequencing algorithms like Wavefront
Align [2] employ scatter-gather memory instructions1, which
limit the performance of vector hardware. These instructions
are split into multiple memory requests, extending their overall
processing latency. Each request calculates an associated ad-
dress independently, requiring multiple cycles. The load-store
queue lacks memory coalescing for memory indexed instruc-
tions. For instance, in Intel and Fujitsu A64FX processors,
scatter-gather instruction latency is at least 22 and 19 cycles,
respectively, even with all data in the L1D cache. To better
understand this bottleneck, Fig. 1 depicts the breakdown of
the execution time for various vectorized genome sequence
analysis benchmarks running on a HPC ARM machine with
two levels of cache, using the methodology outlined in Sec-
tion III. The figure shows how cache accesses represent a
considerable amount of the overall execution time in all
algorithms. This bottleneck worsens with input sequence size
due to the expanding active working set, exceeding on-device
memory capacity and leading to a memory-bound behavior.

1Scatter-gather memory instructions are also called the memory indexed
instructions. This paper uses these two terms interchangeably.
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Fig. 1. Execution breakdown of vectorized genome sequence analysis
benchmarks for short and long input sequences, broken down into: no-stall
and stalls due to frontend, Reservation Station (RS), cache and others.

Additionally, scatter-gather instructions fragment into multiple
memory requests, occupying processor pipeline structures like
Load/Store queues or caches, thereby serializing execution
of other memory operations. Thus, efficient hardware imple-
mentation of these instructions will notably enhance genome
sequencing algorithm performance.

B. Rationale for flexible general-purpose accelerators

ASIC-based domain-specific accelerators (e.g., [3]–[6]) of-
fer superior performance and energy efficiency over general-
purpose CPUs, but require costly custom silicon tailored to
specific algorithms. Meanwhile, genome analysis algorithms
evolve rapidly, making fixed-function accelerators inflexible.
For instance, Smith-Waterman (SW) has evolved from its orig-
inal form [7] to banded [8] and adaptive banded variants [9].
Alser et al. [10] reviewed 107 tools from 1988–2020 and ob-
served: (1) continual publication of new tools and algorithms
[10], (2) varied sequencing technologies increasing algorith-
mic demands [10]–[12], and (3) a trend toward combining
multiple algorithms at runtime [10]. These trends motivate the
need for flexible, programmable hardware acceleration.

CPUs and GPUs offer programmability for genome anal-
ysis. SIMD/vector acceleration on CPUs has been widely
explored (e.g., [13]–[16]), but non-unit stride memory patterns
limit efficiency (see SectionI-A). GPUs exploit massive paral-
lelism and achieve strong performance on short sequences [6],
[17]–[20], yet scale poorly with long sequences due to memory
pressure [21], [22]. Long-read sequencing [23] and grow-
ing genome datasets increase the demand for efficient long-
sequence analysis [10], [12], [23]–[25], underscoring the need
for versatile acceleration.



We target CPU-based acceleration of genome analysis for
two reasons: (1) as shown in Section I-A, vectorized CPU
performance is limited by memory instruction inefficien-
cies —optimizing the execution of these memory instructions
can yield substantial performance improvements. (2) As shown
in Section IV-C, GPUs underperform on long sequences due
to memory constraints. Thus, hardware-software co-designed
CPU-based solutions, such as our proposal (Quetzal), could
outperform GPUs for long-read workloads.

II. QUETZAL OVERVIEW

Quetzal is a vector acceleration framework consisting of
two main components: a vector accelerator tightly coupled
to the Vector Processing Unit (VPU) datapath and a set of
novel vector instructions that expose the functionality of the
accelerator to the programming model. Quetzal design is
driven by three main goals: (1) accelerate memory indexed
instructions in modern genome sequencing algorithms, (2) pro-
vide a flexible framework applicable to multiple algorithms,
and (3) achieve a light-weight hardware implementation that
reuses the available hardware in ARM SVE implementations.
Quetzal accelerator is composed of four main compo-

nents, as shown in Fig. 2: (1) Two hardware buffers that
are directly connected to the VPU to quickly forward data to
the vector ALU without using the cache hierarchy (e.g., the
input genome sequences). (2) data encoder that applies a
static bit-encoding to reduce the size of the DNA/RNA input
sequences stored in the buffers. (3) access ctrl that
process all the data accesses from the VPU to the buffers
and works as the interface between the buffers and the
core’s VPU components, and (4) count ALU that counts the
number of consecutive elements between two input values.

1) Accelerating memory indexed instructions: Quetzal
incorporates two hardware buffers specifically designed
to deliver sufficient bandwidth to the VPU for rapid ex-
ecution of memory indexed instructions. These buffers
store frequently used genome sequencing data, in particular
those values accessed through memory indexed instructions.
Then, the algorithm utilizes Quetzal instructions to access
the values previously stored in the buffers. Quetzal
buffers features three key characteristics enabling them
to provide more efficient support for memory indexed oper-
ations. (1) They are direct-mapped. Then, instead of using
memory addresses (requiring address translation), Quetzal
uses indices to access the buffers, thus, requiring a simpler
control compared to caches. (2) Quetzal buffers are
highly multiported structures, allowing the VPU to access data
in only two cycles, a significant improvement over the 22 or
19 cycles required in Intel and A64FX cores, respectively. (3)
Quetzal buffers support bit-encoded values (less than 8
bits), reducing the overhead of accessing unaligned.

2) Accelerating counting consecutive matching elements:
Counting consecutive matching elements is useful for dif-
ferent applications that calculate maximal exact matches
(MEMs) [26] and maximal unique matches (MUMs) [27]
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Fig. 2. Overview of Quetzal hardware (purple) integrated into the VPU
datapath (dark blue).

including SneakySnake [28], protein multiple sequence align-
ment [29], read mapping [26], and sequence alignment [30].
Quetzal features a specialized count ALU capable of
efficiently counting the number of consecutive matches be-
tween two input sequences. We employ this functional unit
together with the Quetzal buffers to significantly reduce
the instruction overhead of modern algorithms when counting
consecutive matching elements.

III. EXPERIMENTAL ENVIRONMENT

Simulator: We evaluate Quetzal using the gem5 sim-
ulator [31], simulating a 16-core aarch64 full-system with
Ubuntu 20.04 and Linux Kernel 4.18.0+. Our gem5 model is
validated against a Fujitsu A64FX-like architecture [32], used
in the Fugaku supercomputer. Each core includes a Quetzal
module connected to its VPU. We extend gem5’s Out-of-Order
model to simulate Quetzal’s functionality and latency.

Benchmarks and datasets: We assess Quetzal’s per-
formance with widely used sequence alignment algorithms.
For the baseline, we select two modern sequence aligners:
Wavefront Align (WFA [2]), Bidirectional Wavefront Align
(BiWFA [33]), and one modern sequence filter: SneakySnake
(SS [28]). For the baseline algorithms, we utilize compiler
auto-vectorization. For each algorithm we implemented a
hand-coded vectorized version using ARM SVE intrinsics
(referred as VEC). Additionally, we evaluate two Quetzal
versions: one only with hardware buffers (QUETZAL) and
one including the count ALU as well (QUETZAL+C). We
validate correctness by bitwise comparing Quetzal outputs
with naive versions. We evaluate Quetzal using both short
(100 - 300 base pairs) and long (1K - 30K base pairs)
DNA/RNA sequences.

Comparison between Quetzal and GPU approaches. We
compare the performance of the Quetzal-based implemen-
tation of WFA against WFA-GPU [21], a GPU-based approach
using the same algorithm. In these experiments, we use a 16-
core CPU featuring Quetzal and an NVIDIA A40 GPU.
We use the open-source implementation available for WFA-
GPU [34].

IV. EVALUATION

A. Single-core performance analysis

Fig. 3 depicts the normalized performance results for all the
evaluated algorithms.



Modern sequence aligners: For short reads, QUETZAL
and QUETZAL+C achieve 1.5× and 2.1× better performance,
respectively, compared to the VEC algorithm. For long reads,
the improvement is 5.1× and 5.5×, respectively. These en-
hancements stem from (1) the buffers reducing memory
indexed instruction latency to just 2 cycles and (2) the count
ALU hardware accelerating the counting of consecutive match-
ing elements in a single instruction.

When processing short reads, modern algorithms are dom-
inated by both reservation station stalls and cache accesses
(as shown in Section I-A). As such, QUETZAL+C provides
significantly better performance by reducing the number of
instructions executed. On the other hand, when long reads are
processed, these algorithms are dominated by cache accesses.
As such, Quetzal provides significant performance benefits
even when using only the buffers.

Modern sequence filters: On average, a system with
QUETZAL+C shows 2.1× and 5.2× better performance than
the VEC algorithm for short and long reads respectively.
SS features similar bottlenecks than WFA and BiWFA, thus,
Quetzal’s hardware efficiently accelerates this algorithm.
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Fig. 3. QUETZAL performance results for all the evaluated algorithms using
short reads and long reads input datasets. Results are normalized to the naive
implementation of each algorithm.

B. Multicore scalability

Fig. 4.a depicts the multicore scalability evaluation of
Quetzal over all the previously evaluated algorithms and
datasets using the QUETZAL+C configuration. All Quetzal-
based implementations demonstrate good performance scala-
bility as thread count increases. However, performance does
not increase linearly with the number of threads.

For small input sequences, the cache hierarchy can accom-
modate the entire set of DP matrices, enabling near-linear
speedups. In contrast, for large input sequences, each DP
matrix exceeds the capacity of the last-level cache (LLC),
requiring frequent off-chip memory accesses to read and
update matrix entries. As the number of threads increases,
the aggregate number of off-chip memory requests rises ac-
cordingly, causing memory bandwidth to become the primary
bottleneck that limits further scalability.

C. Comparison with GPU approaches

We evaluate the performance of Quetzal compared to the
WFA-GPU implementation. In our experiments, we use the
entire NVIDIA A40 GPU and a 16-core Quetzal capable

1 4 8 12 16
Number of threads

0

5

10

15

20

Sp
ee

du
p 

(x
)

(a)

WFA
BiWFA

SS

Short Reads Long Reads

102

104

106

Al
ig

nm
en

ts
/s

ec

(b)

VEC QUETZAL+C GPU

Fig. 4. (a) Multicore scalability using the QUETZAL+C version of each
algorithm. (b) Throughput comparison between QUETZAL+C and GPU
approaches. Results are reported on a logarithmic scale.

CPU to align all the input datasets listed in Section III. We
evaluate multiple alignment parameters for the GPU imple-
mentations and report the best-performing results.

Fig. 4.b shows the throughput results obtained. We make
three observations: (1) When processing short sequences,
the parallelism offered by GPUs can outperform VEC and
Quetzal designs. However, the NVIDIA A40 GPU con-
sumes >10× more area compared to Quetzal. (2) The
sequence size limits the parallelism offered by GPUs. With
longer sequence lengths, the active working set, encompassing
metadata, DP matrix, and other structures, increases signifi-
cantly. Consequently, the available on-chip memory can serve
only a small number of GPU threads, an effect called low oc-
cupancy, which significantly reduces the performance for long
sequences compared to shorter sequences [6], [21], [22]. For
example, WFA-GPU outperforms WFA (VEC) by 2.0×, which
represents a performance drop of 40% compared to short se-
quences. (3) As analyzed in Section I-A, when processing long
sequences, the execution time of modern genome sequence
analysis algorithms is dominated by memory-indexed instruc-
tions. Quetzal efficiently accelerates these instructions, pro-
viding notable performance benefits. On average, Quetzal
outperforms WFA-GPU by 2.7× for long sequences.

V. CONCLUSION

We propose Quetzal, the first vector acceleration frame-
work capable of efficiently supporting a wide range of
modern state-of-the-art genome sequence analysis algorithms.
Quetzal integrates a cost-effective vector accelerator within
a general-purpose ARM CPU’s vector datapath, offering both
high performance and programmability for modern and emerg-
ing workloads. We evaluate Quetzal across two use cases:
sequence alignment and edit distance approximation. Our
results show that Quetzal is a power- and area-efficient
scratchpad-based design that significantly accelerates genome
sequence analysis algorithms for both short and long se-
quences. Nevertheless, Quetzal significantly outperforms to
GPU-based algorithms by 2.7× for long input reads.
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