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• Performance projection accuracy is critical for CPU architects
– Run benchmarks in software models to forecast performance

• SimPoint sampling with Basic Block Vectors (BBVs) is widely adopted
– Software simulation is slow -> sampling is essential

• Major issue: BBV sampling (code-only) can fail for applications with array-indirect memory accesses (a[b[i]])

• 523.xalancbmk_r outlier: 20% underestimation on 192-core SoC
– Correlation drops from 0.84 -> 0.82 -> 0.80 as core count increases
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Challenges in SoC Performance Projections



• Memory Access Vectors (MAV) Approach
– Memory access frequency to different memory regions

– Microarchitecture-independent: Tracks functional memory access patterns

• Key contributions
– Detailed characterization of 523.xalancbmk_r 

– Combining BBV and MAV methodology

– 523.xalancbmk_r correlation at 192 cores: 80% → 98% improvement
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Our Solution & Key Results



• Setup
• Hardware platform: AmpereOne A192-32X SoC (192 cores) 

• Performance Model: In-house simulator targeting AmpereOne architecture 

• Benchmark: SPEC CPU2017 integer suite, focus on 523.xalancbmk_r

• Trace Collection: QEMU instrumentation to collect BBV + MAV data

• Correlation methodology
• Validation: Compare performance model scores against hardware measurements

• Target: Correlation as close to 1.00 as possible
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Experimental Setup and Methodology



• Traditional SimPoint Limitations
– Basic Block Vectors: Count occurrences 

of code blocks in instruction windows

– Assumption: Code signatures correlate 
with IPC

– Reality: Same code can exhibit different 
microarchitectural phases

• First ~200B inst: Xerces-C++ 2.7 parser

• Next ~700B inst: Xalan-C++ 1.1 transformer
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Why BBVs Fall Short

Self-similarity plot of 523.xalancbmk_r using BBV



• Core Concept & Design
– Microarchitecture independent

tracking of functional memory access 
patterns

– 4096-byte granularity (memory page 
aligned) in physical address space

– Records all read/write operations per 
10M instruction window

• The 523.xalancbmk_r Case Study
– Complex data movement patterns
– Memory access characteristics significantly 

influence IPC
– Working set size and access distribution 

create phase variations
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Memory Access Vectors (MAV) Methodology

Self-similarity plot of 523.xalancbmk_r using MAV
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Combining BBV and MAV

BBV alone (left): Shows code BBV alone (left): Shows code similarity in first 200B instructions (Xerces parser)

MAV alone (center): Reveals data similarity patterns between 100B-200B instructions

Combined BBV+MAV (right): Identifies multiple phases not visible with either technique alone
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Phase Detection Improvement

BBV-Only Limitations (Figure 2)
• Only 2 phases cover first ~200B instructions (Phase IDs 2, 21)
• Treats Xerces region as homogeneous, inadequate sampling of diverse behaviors

BBV+MAV Enhancement (Figure 3)
• 12 phases now cover Xerces region (>1/3 of total clusters)
• Clearer separation for k-means clustering, better representation of microarchitectural diversity
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Phase Detection Improvement

Comparison Against Silicon IPC
• Phase 2 (BBV-only) covered regions with both very low 

and very high IPC
• BBV+MAV Phases 4 and 30 now represent highest IPC 

regions accurately
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• 18% and 11% correlation improvement at 192 and 96 cores respectively
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Results



• Workload Characterization: Identified why 523.xalancbmk_r misses target - parser 
accesses diverse data despite recurring code, creating microarchitectural phases BBV 
cannot detect

• Combining MAV with BBV: Memory access vectors with performance-focused 
transformation and automatic adaptive weighting - no manual tuning

• Correlation Improvement: 18% and 11% correlation improvement at 192 and 96 cores 
respectively
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Results and Contributions
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Thanks!
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• 2P Mt Collins L10 System

• 1x Mt Collins 2U24 NVMe MP

• 2x Q80-30 SoCs (80 core, 3.0Ghz)

• 2x 16GB DIMMs

• 1x 960GB PCIe M.2 SSD

• Onboard NIC

• No warranty or technical support

• Terms and conditions
– Receiving party must sign Ampere Donor Form

– Promotion valid while supplies last

Server Seeding program Ampere donates high core count ARM servers 
to academic research labs. If you are interested 
and have rack space available, please email: 
mahesh@amperecomputing.com



• Vector Transformation Process
– Inverse Frequency Computation: 

1/access_frequency for each memory region
• Emphasizes infrequently accessed regions (likely cache 

misses/page faults)
• De-emphasizes frequently accessed regions (likely 

cached)

– Performance-Focused Sorting: Sort by inverse 
frequencies (descending order)
• Prioritizes performance-critical memory accesses
• Memory address labels discarded - focus on access 

pattern, not location

– Result: Signature captures actual performance 
impact rather than raw access counts

• Normalization: Matrix-wide normalization (vs. 
individual vector normalization)
– MAV vectors normalized to have an average 

magnitude of 1

– Preserves relative memory intensity across 
instruction windows
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MAV Integration Pipeline

• Temporal Locality: 0.95 exponential decay over 10 
instruction windows
– Captures longer-term memory reuse patterns

– Accounts for extensive cache hierarchies in server-class CPUs

• Dimension Reduction: Gaussian Random Projection 
to 15 dimensions
– Matches BBV dimensionality for equal weighting

– Combined into 30-dimensional representation (BBV + MAV)

• Adaptive Weighting: MAV contribution scaled by % 
of memory operations
– Memory-intensive apps: MAVs significantly influence phase 

detection

– Compute-bound apps: BBVs remain primary indicator

– Automatic adaptation - no manual tuning required

• Final Clustering: Combined BBV+MAV matrix → 
SimPoint k-means algorithm
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