
Memory Access Vectors:
Improving Sampling Fidelity for CPU Performance
Simulations

Sriyash Caculo, Mahesh Madhav, Jeff Baxter
AmpereOne Product Architecture
Ampere Computing, Portland, OR

• Performance projection accuracy is critical for CPU architects
– Run benchmarks in software models to forecast performance

• SimPoint sampling with Basic Block Vectors (BBVs) is widely adopted
– Software simulation is slow -> sampling is essential

• Major issue: BBV sampling (code-only) can fail for applications with array-indirect memory accesses (a[b[i]])

• 523.xalancbmk_r outlier: 20% underestimation on 192-core SoC
– Correlation drops from 0.84 -> 0.82 -> 0.80 as core count increases

2

Challenges in SoC Performance Projections

• Memory Access Vectors (MAV) Approach
– Memory access frequency to different memory regions

– Microarchitecture-independent: Tracks functional memory access patterns

• Key contributions
– Detailed characterization of 523.xalancbmk_r

– Combining BBV and MAV methodology

– 523.xalancbmk_r correlation at 192 cores: 80% → 98% improvement

3

Our Solution & Key Results

• Setup
• Hardware platform: AmpereOne A192-32X SoC (192 cores)

• Performance Model: In-house simulator targeting AmpereOne architecture

• Benchmark: SPEC CPU2017 integer suite, focus on 523.xalancbmk_r

• Trace Collection: QEMU instrumentation to collect BBV + MAV data

• Correlation methodology
• Validation: Compare performance model scores against hardware measurements

• Target: Correlation as close to 1.00 as possible

4

Experimental Setup and Methodology

• Traditional SimPoint Limitations
– Basic Block Vectors: Count occurrences

of code blocks in instruction windows

– Assumption: Code signatures correlate
with IPC

– Reality: Same code can exhibit different
microarchitectural phases

• First ~200B inst: Xerces-C++ 2.7 parser

• Next ~700B inst: Xalan-C++ 1.1 transformer

5

Why BBVs Fall Short

Self-similarity plot of 523.xalancbmk_r using BBV

• Core Concept & Design
– Microarchitecture independent

tracking of functional memory access
patterns

– 4096-byte granularity (memory page
aligned) in physical address space

– Records all read/write operations per
10M instruction window

• The 523.xalancbmk_r Case Study
– Complex data movement patterns
– Memory access characteristics significantly

influence IPC
– Working set size and access distribution

create phase variations

6

Memory Access Vectors (MAV) Methodology

Self-similarity plot of 523.xalancbmk_r using MAV

7

Combining BBV and MAV

BBV alone (left): Shows code BBV alone (left): Shows code similarity in first 200B instructions (Xerces parser)

MAV alone (center): Reveals data similarity patterns between 100B-200B instructions

Combined BBV+MAV (right): Identifies multiple phases not visible with either technique alone

8

Phase Detection Improvement

BBV-Only Limitations (Figure 2)
• Only 2 phases cover first ~200B instructions (Phase IDs 2, 21)
• Treats Xerces region as homogeneous, inadequate sampling of diverse behaviors

BBV+MAV Enhancement (Figure 3)
• 12 phases now cover Xerces region (>1/3 of total clusters)
• Clearer separation for k-means clustering, better representation of microarchitectural diversity

9

Phase Detection Improvement

BBV-Only Limitations (Figure 2)
• Only 2 phases cover first ~200B instructions (Phase IDs 2, 21)
• Treats Xerces region as homogeneous, inadequate sampling of diverse behaviors

BBV+MAV Enhancement (Figure 3)
• 12 phases now cover Xerces region (>1/3 of total clusters)
• Clearer separation for k-means clustering, better representation of microarchitectural diversity

10

Phase Detection Improvement

Comparison Against Silicon IPC
• Phase 2 (BBV-only) covered regions with both very low

and very high IPC
• BBV+MAV Phases 4 and 30 now represent highest IPC

regions accurately

11

Phase Detection Improvement

Comparison Against Silicon IPC
• Phase 2 (BBV-only) covered regions with both very low

and very high IPC
• BBV+MAV Phases 4 and 30 now represent highest IPC

regions accurately

• 18% and 11% correlation improvement at 192 and 96 cores respectively

12

Results

• Workload Characterization: Identified why 523.xalancbmk_r misses target - parser
accesses diverse data despite recurring code, creating microarchitectural phases BBV
cannot detect

• Combining MAV with BBV: Memory access vectors with performance-focused
transformation and automatic adaptive weighting - no manual tuning

• Correlation Improvement: 18% and 11% correlation improvement at 192 and 96 cores
respectively

13

Results and Contributions

14

Thanks!

15

• 2P Mt Collins L10 System

• 1x Mt Collins 2U24 NVMe MP

• 2x Q80-30 SoCs (80 core, 3.0Ghz)

• 2x 16GB DIMMs

• 1x 960GB PCIe M.2 SSD

• Onboard NIC

• No warranty or technical support

• Terms and conditions
– Receiving party must sign Ampere Donor Form

– Promotion valid while supplies last

Server Seeding program Ampere donates high core count ARM servers
to academic research labs. If you are interested
and have rack space available, please email:
mahesh@amperecomputing.com

• Vector Transformation Process
– Inverse Frequency Computation:

1/access_frequency for each memory region
• Emphasizes infrequently accessed regions (likely cache

misses/page faults)
• De-emphasizes frequently accessed regions (likely

cached)

– Performance-Focused Sorting: Sort by inverse
frequencies (descending order)
• Prioritizes performance-critical memory accesses
• Memory address labels discarded - focus on access

pattern, not location

– Result: Signature captures actual performance
impact rather than raw access counts

• Normalization: Matrix-wide normalization (vs.
individual vector normalization)
– MAV vectors normalized to have an average

magnitude of 1

– Preserves relative memory intensity across
instruction windows

16

MAV Integration Pipeline

• Temporal Locality: 0.95 exponential decay over 10
instruction windows
– Captures longer-term memory reuse patterns

– Accounts for extensive cache hierarchies in server-class CPUs

• Dimension Reduction: Gaussian Random Projection
to 15 dimensions
– Matches BBV dimensionality for equal weighting

– Combined into 30-dimensional representation (BBV + MAV)

• Adaptive Weighting: MAV contribution scaled by %
of memory operations
– Memory-intensive apps: MAVs significantly influence phase

detection

– Compute-bound apps: BBVs remain primary indicator

– Automatic adaptation - no manual tuning required

• Final Clustering: Combined BBV+MAV matrix →
SimPoint k-means algorithm

	Slide 1: Memory Access Vectors: Improving Sampling Fidelity for CPU Performance Simulations
	Slide 2: Challenges in SoC Performance Projections
	Slide 3: Our Solution & Key Results
	Slide 4: Experimental Setup and Methodology
	Slide 5: Why BBVs Fall Short
	Slide 6: Memory Access Vectors (MAV) Methodology
	Slide 7: Combining BBV and MAV
	Slide 8: Phase Detection Improvement
	Slide 9: Phase Detection Improvement
	Slide 10: Phase Detection Improvement
	Slide 11: Phase Detection Improvement
	Slide 12: Results
	Slide 13: Results and Contributions
	Slide 14
	Slide 15: Server Seeding program
	Slide 16: MAV Integration Pipeline

