QUETZAL: Vector Acceleration Framework for Modern Genome Sequence Analysis Algorithms

Lead authors: Julian Pavon, Ivan Vargas Valdivieso, Carlos Rojas, Cesar Hernandez

Co-authors: Mehmet Aslan, Roger Figueras, Yichao Yuan, Joel Lindegger, Mohammed Alser, Francesc Moll, Santiago Marco Sola, Oguz Ergin, Nishil Talati, Onur Mutlu, Osman Unsal, Mateo Valero and Adrian Cristal

Fun facts

QUETZAL Team:

In the initial QUETZAL team we were all Mexicans.
In ancient cultures in Mexico, QUETZAL was a holy bird.

2015

2020

Generation Sequencing

Platform (Solexa, Illumina)

2010

Date

2005

1,000

	Reference-guided assembly	De-novo assembly
Short reads (~100bp)	~200 CPU hours	~2,000 CPU hours
Long reads (~10Kbp)	~5,000 CPU hours	~60,000 CPU hours

1) Indexing

Center

Custom Accelerator

CPU/GPU

- Flexible.
- Low entry-cost.
- Generality and flexibility limits their performance.

Custom Accelerator

CPU/GPU

- Flexible.
- Low entry-cost.
- Generality and flexibility limits their performance.

Custom Accelerator

- High performance and Energy efficiency.
- They are tight to a single algorithm or a single sequence length.
- High design and entry-cost.

CPU/GPU

- Flexible.
- Low entry-cost.
- Generality and flexibility line, their performance.

Custom Accelerator

- High Erformance and Energy effective.
- ey are tight to a single algorithm or a single sequence length.
- High design and entry-cost.

Key Contributions

Key Contributions:

 QUETZAL addresses the bottlenecks from vector architectures when processing genome sequence analysis workloads.

Key Contributions

Key Contributions:

- QUETZAL addresses the bottlenecks from vector architectures when processing genome sequence analysis workloads.
- A CPU featuring QUETZAL, achieves 5.7x better performance compared to the baseline CPU architecture.

Key Contributions

Key Contributions:

- QUETZAL addresses the bottlenecks from vector architectures when processing genome sequence analysis workloads.
- A CPU featuring QUETZAL, achieves 5.7x better performance compared to the baseline CPU architecture.
- QUETZAL outperforms GPUs when processing long genome sequences.

Outline

- 1. Introduction and motivation
- 2. Background
 - a) Modern Genome Analysis Algorithms
 - b) Bottlenecks
- 3. QUETZAL
 - a) Insights and Functionality
- 4. Evaluation
- 5. Conclusion

Outline

- 1. Introduction and motivation
- 2. Background
 - a) Modern Genome Analysis Algorithms
 - b) Bottlenecks
- 3. QUETZAL
 - a) Insights and Functionality
- 4. Evaluation
- 5. Conclusion

Modern Genome Analysis Algorithms

Classical approach

Modern Genome Analysis Algorithms

Modern approach (WFA[1])

Vector Architectures

- Vector architectures follow the **SIMD** (Single Instruction Multiple Data) taxonomy.
- Really efficient to exploit **Data-level Parallelism**.

Vector Architectures

- Vector architectures follow the SIMD (Single Instruction Multiple Data) taxonomy.
- Really efficient to exploit **Data-level Parallelism**.

Scalar Operation

Vector Architectures

- Vector architectures follow the **SIMD** (Single Instruction Multiple Data) taxonomy.
- Really efficient to exploit **Data-level Parallelism**.

Scalar Operation

Vector Operation

Modern approach (WFA[1])

Modern approach (WFA[1])

Memory

Pattern

Text

Two major bottlenecks:

- 1) Scatter/gather instructions
- 2) The large number of instructions to handle bit-encoded data.

Outline

- 1. Introduction and motivation
- 2. Background
 - a) Modern Genome Analysis Algorithms
 - b) Bottlenecks
- 3. QUETZAL
 - a) Insights and Functionality
- 4. Evaluation
- 5. Summary

• QUETZAL supports bit-encoded operations without extra instructions.

- QUETZAL supports bit-encoded operations without extra instructions.
- QBUFFERS reduce the access latency from 22 cycles to only 2 cycles.

- QUETZAL supports bit-encoded operations without extra instructions.
- QBUFFERS reduce the access latency from 22 cycles to only 2 cycles.
- QUETZAL features custom hardware to calculate the maximum number of exact matches.

Outline

- 1. Introduction and motivation
- 2. Background
 - a) Modern Genome Analysis Algorithms
 - b) Bottlenecks
- 3. QUETZAL
 - a) Insights and Functionality
- 4. Evaluation
- 5. Conclusion

- We use the **gem5 simulator** to model a **16-core ARM 64-bit full-system** running an **Ubuntu 20.04** with a 4.18.0+ Linux Kernel.
- All results are normalized to a CPU baseline.

• Five algorithms: three modern and two classical algorithms.

- Five algorithms: three modern and two classical algorithms.
- Two alphabets: DNA/RNA and Proteins.

- Five algorithms: three modern and two classical algorithms.
- Two alphabets: DNA/RNA and Proteins.
- Both short and long DNA/RNA sequences.

- Five algorithms: three modern and two classical algorithms.
- Two alphabets: DNA/RNA and Proteins.
- Both short and long DNA/RNA sequences.
- Two QUETZAL implementations

• QUETZAL significantly outperforms all the evaluated algorithms.

- QUETZAL significantly outperforms all the evaluated algorithms.
- **Speedup:** 5.7x better performance compared to other vectorized algorithms.

- QUETZAL significantly outperforms all the evaluated algorithms.
- Speedup: 5.7x better performance compared to other vectorized algorithms.
- QUETZAL is capable of accelerating both modern and classical genome sequence analysis algorithms.

• Two algorithms: one modern and one classical algorithms.

- Two algorithms: one modern and one classical algorithms.
- Both short and long DNA/RNA sequences.

- Two algorithms: one modern and one classical algorithms.
- Both short and long DNA/RNA sequences.
- we compared a 16-core CPU featuring QUETZAL and an NVIDIA A40 GPU.

• When processing long reads, QUETZAL outperform by 2.7x and 1.1x for WFA and Smith-Waterman (Classical algorithm), respectively.

Area overhead results

We evaluated the area overhead of QUETZAL by going all the way from RTL to Place&Route our design using SystemVerilog and the Synopsys' ICC2 Place and Route tool targeting 7nm node technology and 2GHz frequency.

Our evaluation shows a small area overhead of

1.4%

compared to a Fujitsu A64FX SoC.

Other content of the paper

- 1. Detailed explanation of all the hardware components in QUETZAL.
- 2. Examples to integrate QUETZAL in a C++ code.
- 3. Single- and multi-core scalability.
- 4. Design Space Exploration to right-size the QBUFFERS.
- 5. QUETZAL performance for non-genomic applications.
- 6. Comparison to ASIC accelerators.

Outline

- 1. Introduction and motivation
- 2. Background
 - a) Modern Genome Analysis Algorithms
 - b) Bottlenecks
- 3. QUETZAL
 - a) Insights and Functionality
- 4. Evaluation
- 5. Conclusion

Conclusion

- Striking a balance between high performance and generality is critical
- CPU's vector data path offers an attractive design choice for data parallel applications
- QUETZAL hardware-software co-design for genome sequencing with 5.7x compared to baseline CPU

QUETZAL: Vector Acceleration Framework for Modern Genome Sequence Analysis Algorithms

Lead authors: Julian Pavon, Ivan Vargas Valdivieso, Carlos Rojas, Cesar Hernandez

Co-authors: Mehmet Aslan, Roger Figueras, Yichao Yuan, Joel Lindegger, Mohammed Alser, Francesc Moll, Santiago Marco Sola, Oguz Ergin, Nishil Talati, Onur Mutlu, Osman Unsal, Mateo Valero and Adrian Cristal

