
QUETZAL: Vector Acceleration Framework 
for Modern Genome Sequence Analysis 

Algorithms

Lead authors: Julian Pavon, Ivan Vargas Valdivieso,
Carlos Rojas, Cesar Hernandez

Co-authors: Mehmet Aslan, Roger Figueras, Yichao
Yuan, Joel Lindegger, Mohammed Alser, Francesc Moll,
Santiago Marco Sola, Oguz Ergin, Nishil Talati, Onur
Mutlu, Osman Unsal, Mateo Valero and Adrian Cristal



Fun facts

1

QUETZAL Team:

In the initial QUETZAL team we were all Mexicans.

In ancient cultures in Mexico, QUETZAL was a holy bird.



2

Read Mapping

Genome Analysis Pipeline

Sequencing



2

Read Mapping

Genome Analysis Pipeline

Sequencing



3

Read Mapping

Genome Analysis Pipeline

Sequencing



3

Read Mapping

Genome Analysis Pipeline

Reference-guided 
assembly

De-novo assembly

Short reads
(~100bp)

~200 CPU hours ~2,000 CPU hours

Long reads
(~10Kbp)

~5,000 CPU hours ~60,000 CPU hours

Sequencing



3

Read Mapping

Genome Analysis Pipeline

Reference-guided 
assembly

De-novo assembly

Short reads
(~100bp)

~200 CPU hours ~2,000 CPU hours

Long reads
(~10Kbp)

~5,000 CPU hours ~60,000 CPU hours

First requirement:
Support both Long and Short genome 

sequences

Sequencing



4

Read Mapping

Genome Analysis Pipeline

1) Indexing

Sequencing



4

Read Mapping

Genome Analysis Pipeline

1) Indexing 2) Filtering

Sequencing



4

Read Mapping

Genome Analysis Pipeline

2) Filtering 3) Alignment1) Indexing

Sequencing



4

Read Mapping

Genome Analysis Pipeline

2) Filtering 3) Alignment1) Indexing

Second requirement:
Accelerate multiple algorithms from the 

genome analysis pipeline.

Sequencing



5

Accelerating the Genome Analysis Pipeline

CPU/GPU Custom Accelerator



5

Accelerating the Genome Analysis Pipeline

CPU/GPU
• Flexible.
• Low entry-cost.
• Generality and flexibility limits their 

performance.

Custom Accelerator



5

Accelerating the Genome Analysis Pipeline

CPU/GPU
• Flexible.
• Low entry-cost.
• Generality and flexibility limits their 

performance.

Custom Accelerator
• High performance and Energy 

efficiency.
• They are tight to a single algorithm 

or a single sequence length.
• High design and entry-cost.



6

Accelerating the Genome Analysis Pipeline

CPU/GPU
• Flexible.
• Low entry-cost.
• Generality and flexibility limits their 

performance.

Custom Accelerator
• High performance and Energy 

efficiency.
• They are tight to a single algorithm 

or a single sequence length.
• High design and entry-cost.

¿?



6

Accelerating the Genome Analysis Pipeline

CPU/GPU
• Flexible.
• Low entry-cost.
• Generality and flexibility limits their 

performance.

Custom Accelerator
• High performance and Energy 

efficiency.
• They are tight to a single algorithm 

or a single sequence length.
• High design and entry-cost.

¿?

Answer:
We proposed QUETZAL, a hardware-

software co-designed vector acceleration 
framework



Key Contributions

7

Key Contributions:

• QUETZAL addresses the bottlenecks from
vector architectures when processing
genome sequence analysis workloads.



Key Contributions

7

Key Contributions:

• QUETZAL addresses the bottlenecks from
vector architectures when processing
genome sequence analysis workloads.

• A CPU featuring QUETZAL, achieves 5.7x
better performance compared to the
baseline CPU architecture.



Key Contributions

7

Key Contributions:

• QUETZAL addresses the bottlenecks from
vector architectures when processing
genome sequence analysis workloads.

• A CPU featuring QUETZAL, achieves 5.7x
better performance compared to the
baseline CPU architecture.

• QUETZAL outperforms GPUs when
processing long genome sequences.



Outline

8

1. Introduction and motivation
2. Background

a) Modern Genome Analysis Algorithms
b) Bottlenecks

3. QUETZAL
a) Insights and Functionality

4. Evaluation
5. Conclusion



Outline

8

1. Introduction and motivation
2. Background

a) Modern Genome Analysis Algorithms
b) Bottlenecks

3. QUETZAL
a) Insights and Functionality

4. Evaluation
5. Conclusion



Modern Genome Analysis Algorithms

9

Classical approach



Modern Genome Analysis Algorithms

9

Classical approach Modern approach (WFA[1])

[1] Marco-sola et al., Fast gap-affine pairwise alignment using the wavefront algorithm, Bioinformatics, 2020.



Vector Architectures

• Vector architectures follow the SIMD (Single Instruction Multiple Data) taxonomy.

• Really efficient to exploit Data-level Parallelism.

10



Vector Architectures

• Vector architectures follow the SIMD (Single Instruction Multiple Data) taxonomy.

• Really efficient to exploit Data-level Parallelism.

10

A0 + B0 = C0

A1 + B1 = C1

A2 + B2 = C2

A3 + B3 = C3

Scalar Operation



Vector Architectures

• Vector architectures follow the SIMD (Single Instruction Multiple Data) taxonomy.

• Really efficient to exploit Data-level Parallelism.

10

A0 + B0 = C0

A1 + B1 = C1

A2 + B2 = C2

A3 + B3 = C3

Scalar Operation Vector Operation

C0

C1

C2

C3

A0

A1

A2

A3

+ =

+ =

+ =

+ =

B0

B1

B2

B3



Bottlenecks for Vector Architectures

11

Modern approach (WFA[1])

[1] Marco-sola et al., Fast gap-affine pairwise alignment using the wavefront algorithm, Bioinformatics, 2020.



Bottlenecks for Vector Architectures

11

Modern approach (WFA[1])

[1] Marco-sola et al., Fast gap-affine pairwise alignment using the wavefront algorithm, Bioinformatics, 2020.



Bottlenecks for Vector Architectures

12

T C T A T A C T G C G C G T T T

T C T T T A C T C G C G C G T T

Pattern

Text

Memory



Bottlenecks for Vector Architectures

12

T C T A T A C T G C G C G T T T

T C T T T A C T C G C G C G T T

Pattern

Text

Memory Core

C A C T

C T C C

gather

gather

v1

v2

Loop:



Bottlenecks for Vector Architectures

12

T C T A T A C T G C G C G T T T

T C T T T A C T C G C G C G T T

Pattern

Text

Memory Core

C A C T

C T C C

gather

gather

v1

v2

Loop:

>= 22 cycles



Bottlenecks for Vector Architectures

12

T C T A T A C T G C G C G T T T

T C T T T A C T C G C G C G T T

Pattern

Text

Memory Core

C A C T

C T C C

gather

gather

v1

v2

CMP

Handle bit-encoded 
data

CLZ

SLR

Loop:



Bottlenecks for Vector Architectures

12

T C T A T A C T G C G C G T T T

T C T T T A C T C G C G C G T T

Pattern

Text

Memory Core

C A C T

C T C C

gather

gather

v1

v2

CMP

Handle bit-encoded 
data

CLZ

SLR

Loop:

Processing bit-encoded data 
requires multiple chained 

instructions.



Bottlenecks for Vector Architectures

12

T C T A T A C T G C G C G T T T

T C T T T A C T C G C G C G T T

Pattern

Text

Memory Core

C A C T

C T C C

gather

gather

v1

v2

CMP

Handle bit-encoded 
data

CLZ

SLR

Loop:

Check



Bottlenecks for Vector Architectures

12

T C T A T A C T G C G C G T T T

T C T T T A C T C G C G C G T T

Pattern

Text

Memory Core

C A C T

C T C C

gather

gather

v1

v2

CMP

Handle bit-encoded 
data

CLZ

SLR

Loop:

Check

Two major bottlenecks:
1) Scatter/gather instructions
2) The large number of instructions
to handle bit-encoded data.



Bottlenecks for Vector Architectures

13



Bottlenecks for Vector Architectures

13

QUETZAL addresses these bottlenecks by 
reducing the scatter/gather latency and the 

number of instructions



Outline

14

1. Introduction and motivation
2. Background

a) Modern Genome Analysis Algorithms
b) Bottlenecks

3. QUETZAL
a) Insights and Functionality

4. Evaluation
5. Summary



QUETZAL

15

O
p

e
ra

n
d

B
y
p

a
s

s

data encoder

access ctrl

VRF

VPU

A
L

U
A

L
U

A
L

U
A

L
U

countcountcountcount ALU

QBUFFERs

Issue
queue



QUETZAL

15

O
p

e
ra

n
d

B
y
p

a
s

s

data encoder

access ctrl

VRF

VPU

A
L

U
A

L
U

A
L

U
A

L
U

countcountcountcount ALU

QBUFFERs

Issue
queue • QUETZAL supports bit-encoded operations

without extra instructions.

• They reduce the access latency from 22
cycles to only 2 cycles.

• Support multiple data types to adapt to
multiple genome alphabets (such as DNA
or proteins)



QUETZAL

15

O
p

e
ra

n
d

B
y
p

a
s

s

data encoder

access ctrl

VRF

VPU

A
L

U
A

L
U

A
L

U
A

L
U

countcountcountcount ALU

QBUFFERs

Issue
queue • QUETZAL supports bit-encoded operations

without extra instructions.

• QBUFFERS reduce the access latency from
22 cycles to only 2 cycles.

• Support multiple data types to adapt to
multiple genome alphabets (such as DNA
or proteins)



QUETZAL

15

O
p

e
ra

n
d

B
y
p

a
s

s

data encoder

access ctrl

VRF

VPU

A
L

U
A

L
U

A
L

U
A

L
U

countcountcountcount ALU

QBUFFERs

Issue
queue • QUETZAL supports bit-encoded operations

without extra instructions.

• QBUFFERS reduce the access latency from
22 cycles to only 2 cycles.

• QUETZAL features custom hardware to
calculate the maximum number of exact
matches.



Bottlenecks for Vector architectures

16

T C T A T A C T G C G C G T T T

T C T T T A C T C G C G C G T T

Pattern

Text

Memory Core

QBUFFERs

Unit stride vload



Bottlenecks for Vector architectures

16

T C T A T A C T G C G C G T T T

T C T T T A C T C G C G C G T T

Pattern

Text

Memory Core

C A C T

C T C C

v1

v2

Loop:
QBUFFERs

Unit stride vload

QUETZAL Read

New QUETZAL instruction



Bottlenecks for Vector architectures

16

T C T A T A C T G C G C G T T T

T C T T T A C T C G C G C G T T

Pattern

Text

Memory Core

C A C T

C T C C

v1

v2

QUETZAL 
Count

Loop:
QBUFFERs

Unit stride vload

QUETZAL Read

New QUETZAL instruction



Bottlenecks for Vector architectures

16

T C T A T A C T G C G C G T T T

T C T T T A C T C G C G C G T T

Pattern

Text

Memory Core

C A C T

C T C C

v1

v2

QUETZAL 
Count

Loop:

Check

QBUFFERs

Unit stride vload

QUETZAL Read



Bottlenecks for Vector architectures

16

T C T A T A C T G C G C G T T T

T C T T T A C T C G C G C G T T

Pattern

Text

Memory Core

C A C T

C T C C

v1

v2

QUETZAL 
Count

Loop:

Check

QBUFFERs

Unit stride vload

QUETZAL Read

= 2 cycles



Bottlenecks for Vector architectures

16

T C T A T A C T G C G C G T T T

T C T T T A C T C G C G C G T T

Pattern

Text

Memory Core

C A C T

C T C C

v1

v2

Loop:

Check

QBUFFERs

Unit stride vload

QUETZAL Read

Single instruction to 1) work 
with bit-encoded data and 2) 

find all the exact matches.
QUETZAL 

Count



Outline

17

1. Introduction and motivation
2. Background

a) Modern Genome Analysis Algorithms
b) Bottlenecks

3. QUETZAL
a) Insights and Functionality

4. Evaluation
5. Conclusion



Evaluation

18

• We use the gem5 simulator to model a 16-core ARM 64-bit full-system running an
Ubuntu 20.04 with a 4.18.0+ Linux Kernel.

• All results are normalized to a CPU baseline.



Evaluation

19

• Five algorithms: three modern and two classical algorithms.



Evaluation

19

• Five algorithms: three modern and two classical algorithms.

• Two alphabets: DNA/RNA and Proteins.



Evaluation

19

• Five algorithms: three modern and two classical algorithms.

• Two alphabets: DNA/RNA and Proteins.

• Both short and long DNA/RNA sequences.



Evaluation

19

• Five algorithms: three modern and two classical algorithms.

• Two alphabets: DNA/RNA and Proteins.

• Both short and long DNA/RNA sequences.

• Two QUETZAL implementations



Evaluation

20

• QUETZAL significantly outperforms all the evaluated algorithms.



Evaluation

20

• QUETZAL significantly outperforms all the evaluated algorithms.

• Speedup: 5.7x better performance compared to other vectorized algorithms.



Evaluation

20

• QUETZAL significantly outperforms all the evaluated algorithms.

• Speedup: 5.7x better performance compared to other vectorized algorithms.

• QUETZAL is capable of accelerating both modern and classical genome sequence
analysis algorithms.



Evaluation

21

• Two algorithms: one modern and one classical algorithms.



Evaluation

21

• Two algorithms: one modern and one classical algorithms.

• Both short and long DNA/RNA sequences.



Evaluation

21

• Two algorithms: one modern and one classical algorithms.

• Both short and long DNA/RNA sequences.

• we compared a 16-core CPU featuring QUETZAL and an NVIDIA A40 GPU.



Evaluation

22

• When processing long reads, QUETZAL outperform by 2.7x and 1.1x for WFA and
Smith-Waterman (Classical algorithm), respectively.



Area overhead results

23

We evaluated the area overhead of QUETZAL by going all the way from RTL to
Place&Route our design using SystemVerilog and the Synopsys' ICC2 Place and Route
tool targeting 7nm node technology and 2GHz frequency.

Our evaluation shows a small area overhead of

1.4%
compared to a Fujitsu A64FX SoC.



Other content of the paper

24

1. Detailed explanation of all the hardware components in QUETZAL.

2. Examples to integrate QUETZAL in a C++ code.

3. Single- and multi-core scalability.

4. Design Space Exploration to right-size the QBUFFERS.

5. QUETZAL performance for non-genomic applications.

6. Comparison to ASIC accelerators.



Outline

25

1. Introduction and motivation
2. Background

a) Modern Genome Analysis Algorithms
b) Bottlenecks

3. QUETZAL
a) Insights and Functionality

4. Evaluation
5. Conclusion



Conclusion

• Striking a balance between high performance and generality is critical

• CPU’s vector data path offers an attractive design choice for data parallel applications

• QUETZAL – hardware-software co-design for genome sequencing with 5.7x compared 
to baseline CPU

26



QUETZAL: Vector Acceleration Framework 
for Modern Genome Sequence Analysis 

Algorithms

Lead authors: Julian Pavon, Ivan Vargas Valdivieso,
Carlos Rojas, Cesar Hernandez

Co-authors: Mehmet Aslan, Roger Figueras, Yichao
Yuan, Joel Lindegger, Mohammed Alser, Francesc Moll,
Santiago Marco Sola, Oguz Ergin, Nishil Talati, Onur
Mutlu, Osman Unsal, Mateo Valero and Adrian Cristal


