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Fun facts
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QUETZAL Team:

In the initial QUETZAL team we were all Mexicans.

In ancient cultures in Mexico, QUETZAL was a holy bird.
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Short reads
(~100bp)
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Read Mapping

Genome Analysis Pipeline

2) Filtering 3) Alignment1) Indexing

Second requirement:
Accelerate multiple algorithms from the 

genome analysis pipeline.

Sequencing
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Accelerating the Genome Analysis Pipeline

CPU/GPU
• Flexible.
• Low entry-cost.
• Generality and flexibility limits their 

performance.

Custom Accelerator
• High performance and Energy 

efficiency.
• They are tight to a single algorithm 

or a single sequence length.
• High design and entry-cost.

¿?

Answer:
We proposed QUETZAL, a hardware-

software co-designed vector acceleration 
framework
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Key Contributions:

• QUETZAL addresses the bottlenecks from
vector architectures when processing
genome sequence analysis workloads.

• A CPU featuring QUETZAL, achieves 5.7x
better performance compared to the
baseline CPU architecture.

• QUETZAL outperforms GPUs when
processing long genome sequences.
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Classical approach Modern approach (WFA[1])

[1] Marco-sola et al., Fast gap-affine pairwise alignment using the wavefront algorithm, Bioinformatics, 2020.



Vector Architectures

• Vector architectures follow the SIMD (Single Instruction Multiple Data) taxonomy.

• Really efficient to exploit Data-level Parallelism.

10



Vector Architectures

• Vector architectures follow the SIMD (Single Instruction Multiple Data) taxonomy.

• Really efficient to exploit Data-level Parallelism.

10

A0 + B0 = C0

A1 + B1 = C1

A2 + B2 = C2

A3 + B3 = C3

Scalar Operation



Vector Architectures

• Vector architectures follow the SIMD (Single Instruction Multiple Data) taxonomy.

• Really efficient to exploit Data-level Parallelism.

10

A0 + B0 = C0

A1 + B1 = C1

A2 + B2 = C2

A3 + B3 = C3

Scalar Operation Vector Operation

C0

C1

C2

C3

A0

A1

A2

A3

+ =

+ =

+ =

+ =

B0

B1

B2

B3



Bottlenecks for Vector Architectures

11

Modern approach (WFA[1])

[1] Marco-sola et al., Fast gap-affine pairwise alignment using the wavefront algorithm, Bioinformatics, 2020.
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[1] Marco-sola et al., Fast gap-affine pairwise alignment using the wavefront algorithm, Bioinformatics, 2020.
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data

CLZ
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Check

Two major bottlenecks:
1) Scatter/gather instructions
2) The large number of instructions
to handle bit-encoded data.
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QUETZAL addresses these bottlenecks by 
reducing the scatter/gather latency and the 

number of instructions
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QBUFFERs

Issue
queue • QUETZAL supports bit-encoded operations

without extra instructions.

• QBUFFERS reduce the access latency from
22 cycles to only 2 cycles.

• QUETZAL features custom hardware to
calculate the maximum number of exact
matches.
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• We use the gem5 simulator to model a 16-core ARM 64-bit full-system running an
Ubuntu 20.04 with a 4.18.0+ Linux Kernel.

• All results are normalized to a CPU baseline.
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• Two alphabets: DNA/RNA and Proteins.

• Both short and long DNA/RNA sequences.

• Two QUETZAL implementations
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• QUETZAL significantly outperforms all the evaluated algorithms.

• Speedup: 5.7x better performance compared to other vectorized algorithms.

• QUETZAL is capable of accelerating both modern and classical genome sequence
analysis algorithms.
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• Two algorithms: one modern and one classical algorithms.

• Both short and long DNA/RNA sequences.

• we compared a 16-core CPU featuring QUETZAL and an NVIDIA A40 GPU.
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• When processing long reads, QUETZAL outperform by 2.7x and 1.1x for WFA and
Smith-Waterman (Classical algorithm), respectively.
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We evaluated the area overhead of QUETZAL by going all the way from RTL to
Place&Route our design using SystemVerilog and the Synopsys' ICC2 Place and Route
tool targeting 7nm node technology and 2GHz frequency.

Our evaluation shows a small area overhead of

1.4%
compared to a Fujitsu A64FX SoC.



Other content of the paper
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1. Detailed explanation of all the hardware components in QUETZAL.

2. Examples to integrate QUETZAL in a C++ code.

3. Single- and multi-core scalability.

4. Design Space Exploration to right-size the QBUFFERS.

5. QUETZAL performance for non-genomic applications.

6. Comparison to ASIC accelerators.
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Conclusion

• Striking a balance between high performance and generality is critical

• CPU’s vector data path offers an attractive design choice for data parallel applications

• QUETZAL – hardware-software co-design for genome sequencing with 5.7x compared 
to baseline CPU

26
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